Metamath Proof Explorer


Theorem revval

Description: Value of the word reversing function. (Contributed by Stefan O'Rear, 26-Aug-2015)

Ref Expression
Assertion revval WVreverseW=x0..^WWW-1-x

Proof

Step Hyp Ref Expression
1 elex WVWV
2 fveq2 w=Ww=W
3 2 oveq2d w=W0..^w=0..^W
4 id w=Ww=W
5 2 oveq1d w=Ww1=W1
6 5 oveq1d w=Ww-1-x=W-1-x
7 4 6 fveq12d w=Www-1-x=WW-1-x
8 3 7 mpteq12dv w=Wx0..^www-1-x=x0..^WWW-1-x
9 df-reverse reverse=wVx0..^www-1-x
10 ovex 0..^WV
11 10 mptex x0..^WWW-1-xV
12 8 9 11 fvmpt WVreverseW=x0..^WWW-1-x
13 1 12 syl WVreverseW=x0..^WWW-1-x