Metamath Proof Explorer


Theorem rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis rexfrabdioph.1 M=N+1
Assertion rexfrabdioph N0t01M|[˙t1N/u]˙[˙tM/v]˙φDiophMu01N|v0φDiophN

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M=N+1
2 nfcv _u01N
3 nfcv _a01N
4 nfv av0φ
5 nfcv _u0
6 nfsbc1v u[˙a/u]˙[˙b/v]˙φ
7 5 6 nfrexw ub0[˙a/u]˙[˙b/v]˙φ
8 nfv bφ
9 nfsbc1v v[˙b/v]˙φ
10 sbceq1a v=bφ[˙b/v]˙φ
11 8 9 10 cbvrexw v0φb0[˙b/v]˙φ
12 sbceq1a u=a[˙b/v]˙φ[˙a/u]˙[˙b/v]˙φ
13 12 rexbidv u=ab0[˙b/v]˙φb0[˙a/u]˙[˙b/v]˙φ
14 11 13 bitrid u=av0φb0[˙a/u]˙[˙b/v]˙φ
15 2 3 4 7 14 cbvrabw u01N|v0φ=a01N|b0[˙a/u]˙[˙b/v]˙φ
16 dfsbcq b=tM[˙b/v]˙φ[˙tM/v]˙φ
17 16 sbcbidv b=tM[˙a/u]˙[˙b/v]˙φ[˙a/u]˙[˙tM/v]˙φ
18 dfsbcq a=t1N[˙a/u]˙[˙tM/v]˙φ[˙t1N/u]˙[˙tM/v]˙φ
19 1 17 18 rexrabdioph N0t01M|[˙t1N/u]˙[˙tM/v]˙φDiophMa01N|b0[˙a/u]˙[˙b/v]˙φDiophN
20 15 19 eqeltrid N0t01M|[˙t1N/u]˙[˙tM/v]˙φDiophMu01N|v0φDiophN