Metamath Proof Explorer


Theorem rexfrabdioph

Description: Diophantine set builder for existential quantifier, explicit substitution. (Contributed by Stefan O'Rear, 11-Oct-2014) (Revised by Stefan O'Rear, 6-May-2015)

Ref Expression
Hypothesis rexfrabdioph.1 M = N + 1
Assertion rexfrabdioph N 0 t 0 1 M | [˙ t 1 N / u]˙ [˙ t M / v]˙ φ Dioph M u 0 1 N | v 0 φ Dioph N

Proof

Step Hyp Ref Expression
1 rexfrabdioph.1 M = N + 1
2 nfcv _ u 0 1 N
3 nfcv _ a 0 1 N
4 nfv a v 0 φ
5 nfcv _ u 0
6 nfsbc1v u [˙a / u]˙ [˙b / v]˙ φ
7 5 6 nfrex u b 0 [˙a / u]˙ [˙b / v]˙ φ
8 nfv b φ
9 nfsbc1v v [˙b / v]˙ φ
10 sbceq1a v = b φ [˙b / v]˙ φ
11 8 9 10 cbvrexw v 0 φ b 0 [˙b / v]˙ φ
12 sbceq1a u = a [˙b / v]˙ φ [˙a / u]˙ [˙b / v]˙ φ
13 12 rexbidv u = a b 0 [˙b / v]˙ φ b 0 [˙a / u]˙ [˙b / v]˙ φ
14 11 13 syl5bb u = a v 0 φ b 0 [˙a / u]˙ [˙b / v]˙ φ
15 2 3 4 7 14 cbvrabw u 0 1 N | v 0 φ = a 0 1 N | b 0 [˙a / u]˙ [˙b / v]˙ φ
16 dfsbcq b = t M [˙b / v]˙ φ [˙ t M / v]˙ φ
17 16 sbcbidv b = t M [˙a / u]˙ [˙b / v]˙ φ [˙a / u]˙ [˙ t M / v]˙ φ
18 dfsbcq a = t 1 N [˙a / u]˙ [˙ t M / v]˙ φ [˙ t 1 N / u]˙ [˙ t M / v]˙ φ
19 1 17 18 rexrabdioph N 0 t 0 1 M | [˙ t 1 N / u]˙ [˙ t M / v]˙ φ Dioph M a 0 1 N | b 0 [˙a / u]˙ [˙b / v]˙ φ Dioph N
20 15 19 eqeltrid N 0 t 0 1 M | [˙ t 1 N / u]˙ [˙ t M / v]˙ φ Dioph M u 0 1 N | v 0 φ Dioph N