Metamath Proof Explorer


Theorem rexrnmpo

Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015)

Ref Expression
Hypotheses rngop.1 F=xA,yBC
ralrnmpo.2 z=Cφψ
Assertion rexrnmpo xAyBCVzranFφxAyBψ

Proof

Step Hyp Ref Expression
1 rngop.1 F=xA,yBC
2 ralrnmpo.2 z=Cφψ
3 2 notbid z=C¬φ¬ψ
4 1 3 ralrnmpo xAyBCVzranF¬φxAyB¬ψ
5 4 notbid xAyBCV¬zranF¬φ¬xAyB¬ψ
6 dfrex2 zranFφ¬zranF¬φ
7 dfrex2 yBψ¬yB¬ψ
8 7 rexbii xAyBψxA¬yB¬ψ
9 rexnal xA¬yB¬ψ¬xAyB¬ψ
10 8 9 bitri xAyBψ¬xAyB¬ψ
11 5 6 10 3bitr4g xAyBCVzranFφxAyBψ