Metamath Proof Explorer


Theorem ovid

Description: The value of an operation class abstraction. (Contributed by NM, 16-May-1995) (Revised by David Abernethy, 19-Jun-2012)

Ref Expression
Hypotheses ovid.1 xRyS∃!zφ
ovid.2 F=xyz|xRySφ
Assertion ovid xRySxFy=zφ

Proof

Step Hyp Ref Expression
1 ovid.1 xRyS∃!zφ
2 ovid.2 F=xyz|xRySφ
3 df-ov xFy=Fxy
4 3 eqeq1i xFy=zFxy=z
5 1 fnoprab xyz|xRySφFnxy|xRyS
6 2 fneq1i FFnxy|xRySxyz|xRySφFnxy|xRyS
7 5 6 mpbir FFnxy|xRyS
8 opabidw xyxy|xRySxRyS
9 8 biimpri xRySxyxy|xRyS
10 fnopfvb FFnxy|xRySxyxy|xRySFxy=zxyzF
11 7 9 10 sylancr xRySFxy=zxyzF
12 2 eleq2i xyzFxyzxyz|xRySφ
13 oprabidw xyzxyz|xRySφxRySφ
14 12 13 bitri xyzFxRySφ
15 14 baib xRySxyzFφ
16 11 15 bitrd xRySFxy=zφ
17 4 16 bitrid xRySxFy=zφ