Metamath Proof Explorer


Theorem rfovd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O=aV,bVr𝒫a×bxayb|xry
rfovd.a φAV
rfovd.b φBW
Assertion rfovd φAOB=r𝒫A×BxAyB|xry

Proof

Step Hyp Ref Expression
1 rfovd.rf O=aV,bVr𝒫a×bxayb|xry
2 rfovd.a φAV
3 rfovd.b φBW
4 1 a1i φO=aV,bVr𝒫a×bxayb|xry
5 xpeq12 a=Ab=Ba×b=A×B
6 5 pweqd a=Ab=B𝒫a×b=𝒫A×B
7 simpl a=Ab=Ba=A
8 rabeq b=Byb|xry=yB|xry
9 8 adantl a=Ab=Byb|xry=yB|xry
10 7 9 mpteq12dv a=Ab=Bxayb|xry=xAyB|xry
11 6 10 mpteq12dv a=Ab=Br𝒫a×bxayb|xry=r𝒫A×BxAyB|xry
12 11 adantl φa=Ab=Br𝒫a×bxayb|xry=r𝒫A×BxAyB|xry
13 2 elexd φAV
14 3 elexd φBV
15 2 3 xpexd φA×BV
16 pwexg A×BV𝒫A×BV
17 mptexg 𝒫A×BVr𝒫A×BxAyB|xryV
18 15 16 17 3syl φr𝒫A×BxAyB|xryV
19 4 12 13 14 18 ovmpod φAOB=r𝒫A×BxAyB|xry