Metamath Proof Explorer


Theorem rfovfvd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , and relation R . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
rfovd.a φ A V
rfovd.b φ B W
rfovfvd.r φ R 𝒫 A × B
rfovfvd.f F = A O B
Assertion rfovfvd φ F R = x A y B | x R y

Proof

Step Hyp Ref Expression
1 rfovd.rf O = a V , b V r 𝒫 a × b x a y b | x r y
2 rfovd.a φ A V
3 rfovd.b φ B W
4 rfovfvd.r φ R 𝒫 A × B
5 rfovfvd.f F = A O B
6 1 2 3 rfovd φ A O B = r 𝒫 A × B x A y B | x r y
7 5 6 syl5eq φ F = r 𝒫 A × B x A y B | x r y
8 breq r = R x r y x R y
9 8 rabbidv r = R y B | x r y = y B | x R y
10 9 mpteq2dv r = R x A y B | x r y = x A y B | x R y
11 10 adantl φ r = R x A y B | x r y = x A y B | x R y
12 2 mptexd φ x A y B | x R y V
13 7 11 4 12 fvmptd φ F R = x A y B | x R y