Metamath Proof Explorer


Theorem rfovfvd

Description: Value of the operator, ( A O B ) , which maps between relations and functions for relations between base sets, A and B , and relation R . (Contributed by RP, 25-Apr-2021)

Ref Expression
Hypotheses rfovd.rf O=aV,bVr𝒫a×bxayb|xry
rfovd.a φAV
rfovd.b φBW
rfovfvd.r φR𝒫A×B
rfovfvd.f F=AOB
Assertion rfovfvd φFR=xAyB|xRy

Proof

Step Hyp Ref Expression
1 rfovd.rf O=aV,bVr𝒫a×bxayb|xry
2 rfovd.a φAV
3 rfovd.b φBW
4 rfovfvd.r φR𝒫A×B
5 rfovfvd.f F=AOB
6 1 2 3 rfovd φAOB=r𝒫A×BxAyB|xry
7 5 6 eqtrid φF=r𝒫A×BxAyB|xry
8 breq r=RxryxRy
9 8 rabbidv r=RyB|xry=yB|xRy
10 9 mpteq2dv r=RxAyB|xry=xAyB|xRy
11 10 adantl φr=RxAyB|xry=xAyB|xRy
12 2 mptexd φxAyB|xRyV
13 7 11 4 12 fvmptd φFR=xAyB|xRy