Metamath Proof Explorer


Theorem rgspnid

Description: The span of a subring is itself. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnid.r φRRing
rgspnid.sr φASubRingR
rgspnid.sp φS=RingSpanRA
Assertion rgspnid φS=A

Proof

Step Hyp Ref Expression
1 rgspnid.r φRRing
2 rgspnid.sr φASubRingR
3 rgspnid.sp φS=RingSpanRA
4 eqidd φBaseR=BaseR
5 eqid BaseR=BaseR
6 5 subrgss ASubRingRABaseR
7 2 6 syl φABaseR
8 eqidd φRingSpanR=RingSpanR
9 ssidd φAA
10 1 4 7 8 3 2 9 rgspnmin φSA
11 1 4 7 8 3 rgspnssid φAS
12 10 11 eqssd φS=A