Metamath Proof Explorer


Theorem rgspnssid

Description: The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnval.r φRRing
rgspnval.b φB=BaseR
rgspnval.ss φAB
rgspnval.n φN=RingSpanR
rgspnval.sp φU=NA
Assertion rgspnssid φAU

Proof

Step Hyp Ref Expression
1 rgspnval.r φRRing
2 rgspnval.b φB=BaseR
3 rgspnval.ss φAB
4 rgspnval.n φN=RingSpanR
5 rgspnval.sp φU=NA
6 ssintub AtSubRingR|At
7 1 2 3 4 5 rgspnval φU=tSubRingR|At
8 6 7 sseqtrrid φAU