Metamath Proof Explorer


Theorem rgspnssid

Description: The ring-span of a set contains the set. (Contributed by Stefan O'Rear, 30-Nov-2014)

Ref Expression
Hypotheses rgspnval.r φ R Ring
rgspnval.b φ B = Base R
rgspnval.ss φ A B
rgspnval.n φ N = RingSpan R
rgspnval.sp φ U = N A
Assertion rgspnssid φ A U

Proof

Step Hyp Ref Expression
1 rgspnval.r φ R Ring
2 rgspnval.b φ B = Base R
3 rgspnval.ss φ A B
4 rgspnval.n φ N = RingSpan R
5 rgspnval.sp φ U = N A
6 ssintub A t SubRing R | A t
7 1 2 3 4 5 rgspnval φ U = t SubRing R | A t
8 6 7 sseqtrrid φ A U