Metamath Proof Explorer


Theorem rhmfn

Description: The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rhmfn RingHomFnRing×Ring

Proof

Step Hyp Ref Expression
1 dfrhm2 RingHom=rRing,sRingrGrpHomsmulGrprMndHommulGrps
2 ovex rGrpHomsV
3 2 inex1 rGrpHomsmulGrprMndHommulGrpsV
4 1 3 fnmpoi RingHomFnRing×Ring