Metamath Proof Explorer


Theorem rimgim

Description: An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019)

Ref Expression
Assertion rimgim FRRingIsoSFRGrpIsoS

Proof

Step Hyp Ref Expression
1 rimrhm FRRingIsoSFRRingHomS
2 rhmghm FRRingHomSFRGrpHomS
3 1 2 syl FRRingIsoSFRGrpHomS
4 eqid BaseR=BaseR
5 eqid BaseS=BaseS
6 4 5 rimf1o FRRingIsoSF:BaseR1-1 ontoBaseS
7 4 5 isgim FRGrpIsoSFRGrpHomSF:BaseR1-1 ontoBaseS
8 3 6 7 sylanbrc FRRingIsoSFRGrpIsoS