Metamath Proof Explorer


Theorem ringchom

Description: Set of arrows of the category of unital rings (in a universe). (Contributed by AV, 14-Feb-2020)

Ref Expression
Hypotheses ringcbas.c C = RingCat U
ringcbas.b B = Base C
ringcbas.u φ U V
ringchomfval.h H = Hom C
ringchom.x φ X B
ringchom.y φ Y B
Assertion ringchom φ X H Y = X RingHom Y

Proof

Step Hyp Ref Expression
1 ringcbas.c C = RingCat U
2 ringcbas.b B = Base C
3 ringcbas.u φ U V
4 ringchomfval.h H = Hom C
5 ringchom.x φ X B
6 ringchom.y φ Y B
7 1 2 3 4 ringchomfval φ H = RingHom B × B
8 7 oveqd φ X H Y = X RingHom B × B Y
9 5 6 ovresd φ X RingHom B × B Y = X RingHom Y
10 8 9 eqtrd φ X H Y = X RingHom Y