Database
BASIC ALGEBRAIC STRUCTURES
Rings
Definition and basic properties of unital rings
ringcmnd
Next ⟩
ringpropd
Metamath Proof Explorer
Ascii
Unicode
Theorem
ringcmnd
Description:
A ring is a commutative monoid.
(Contributed by
SN
, 1-Jun-2024)
Ref
Expression
Hypothesis
ringabld.1
⊢
φ
→
R
∈
Ring
Assertion
ringcmnd
⊢
φ
→
R
∈
CMnd
Proof
Step
Hyp
Ref
Expression
1
ringabld.1
⊢
φ
→
R
∈
Ring
2
1
ringabld
⊢
φ
→
R
∈
Abel
3
2
ablcmnd
⊢
φ
→
R
∈
CMnd