Metamath Proof Explorer


Theorem ringinvdv

Description: Write the inverse function in terms of division. (Contributed by Mario Carneiro, 2-Jul-2014)

Ref Expression
Hypotheses ringinvdv.b B=BaseR
ringinvdv.u U=UnitR
ringinvdv.d ×˙=/rR
ringinvdv.o 1˙=1R
ringinvdv.i I=invrR
Assertion ringinvdv RRingXUIX=1˙×˙X

Proof

Step Hyp Ref Expression
1 ringinvdv.b B=BaseR
2 ringinvdv.u U=UnitR
3 ringinvdv.d ×˙=/rR
4 ringinvdv.o 1˙=1R
5 ringinvdv.i I=invrR
6 1 4 ringidcl RRing1˙B
7 eqid R=R
8 1 7 2 5 3 dvrval 1˙BXU1˙×˙X=1˙RIX
9 6 8 sylan RRingXU1˙×˙X=1˙RIX
10 2 5 1 ringinvcl RRingXUIXB
11 1 7 4 ringlidm RRingIXB1˙RIX=IX
12 10 11 syldan RRingXU1˙RIX=IX
13 9 12 eqtr2d RRingXUIX=1˙×˙X