Description: The negative of the unique real such that ph . (Contributed by NM, 13-Jun-2005)
Ref | Expression | ||
---|---|---|---|
Hypothesis | riotaneg.1 | |
|
Assertion | riotaneg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaneg.1 | |
|
2 | tru | |
|
3 | nfriota1 | |
|
4 | 3 | nfneg | |
5 | renegcl | |
|
6 | 5 | adantl | |
7 | simpr | |
|
8 | 7 | renegcld | |
9 | negeq | |
|
10 | renegcl | |
|
11 | recn | |
|
12 | recn | |
|
13 | negcon2 | |
|
14 | 11 12 13 | syl2an | |
15 | 10 14 | reuhyp | |
16 | 15 | adantl | |
17 | 4 6 8 1 9 16 | riotaxfrd | |
18 | 2 17 | mpan | |