Metamath Proof Explorer


Theorem riotaneg

Description: The negative of the unique real such that ph . (Contributed by NM, 13-Jun-2005)

Ref Expression
Hypothesis riotaneg.1 x=yφψ
Assertion riotaneg ∃!xφιx|φ=ιy|ψ

Proof

Step Hyp Ref Expression
1 riotaneg.1 x=yφψ
2 tru
3 nfriota1 _yιy|ψ
4 3 nfneg _yιy|ψ
5 renegcl yy
6 5 adantl yy
7 simpr ιy|ψιy|ψ
8 7 renegcld ιy|ψιy|ψ
9 negeq y=ιy|ψy=ιy|ψ
10 renegcl xx
11 recn xx
12 recn yy
13 negcon2 xyx=yy=x
14 11 12 13 syl2an xyx=yy=x
15 10 14 reuhyp x∃!yx=y
16 15 adantl x∃!yx=y
17 4 6 8 1 9 16 riotaxfrd ∃!xφιx|φ=ιy|ψ
18 2 17 mpan ∃!xφιx|φ=ιy|ψ