Metamath Proof Explorer


Theorem rlimcl

Description: Closure of the limit of a sequence of complex numbers. (Contributed by Mario Carneiro, 16-Sep-2014) (Revised by Mario Carneiro, 28-Apr-2015)

Ref Expression
Assertion rlimcl FAA

Proof

Step Hyp Ref Expression
1 rlimf FAF:domF
2 rlimss FAdomF
3 eqidd FAxdomFFx=Fx
4 1 2 3 rlim FAFAAy+zxdomFzxFxA<y
5 4 ibi FAAy+zxdomFzxFxA<y
6 5 simpld FAA