Metamath Proof Explorer


Theorem rlmassa

Description: The ring module over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015)

Ref Expression
Assertion rlmassa RCRingringLModRAssAlg

Proof

Step Hyp Ref Expression
1 crngring RCRingRRing
2 eqid BaseR=BaseR
3 2 subrgid RRingBaseRSubRingR
4 1 3 syl RCRingBaseRSubRingR
5 rlmval ringLModR=subringAlgRBaseR
6 5 sraassa RCRingBaseRSubRingRringLModRAssAlg
7 4 6 mpdan RCRingringLModRAssAlg