Metamath Proof Explorer


Theorem rmo3

Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017) Avoid ax-13 . (Revised by Wolf Lammen, 30-Apr-2023)

Ref Expression
Hypothesis rmo2.1 yφ
Assertion rmo3 *xAφxAyAφyxφx=y

Proof

Step Hyp Ref Expression
1 rmo2.1 yφ
2 df-rmo *xAφ*xxAφ
3 sban yxxAφyxxAyxφ
4 clelsb1 yxxAyA
5 4 anbi1i yxxAyxφyAyxφ
6 3 5 bitri yxxAφyAyxφ
7 6 anbi2i xAφyxxAφxAφyAyxφ
8 an4 xAφyAyxφxAyAφyxφ
9 ancom xAyAyAxA
10 9 anbi1i xAyAφyxφyAxAφyxφ
11 7 8 10 3bitri xAφyxxAφyAxAφyxφ
12 11 imbi1i xAφyxxAφx=yyAxAφyxφx=y
13 impexp yAxAφyxφx=yyAxAφyxφx=y
14 impexp yAxAφyxφx=yyAxAφyxφx=y
15 12 13 14 3bitri xAφyxxAφx=yyAxAφyxφx=y
16 15 albii yxAφyxxAφx=yyyAxAφyxφx=y
17 df-ral yAxAφyxφx=yyyAxAφyxφx=y
18 r19.21v yAxAφyxφx=yxAyAφyxφx=y
19 16 17 18 3bitr2i yxAφyxxAφx=yxAyAφyxφx=y
20 19 albii xyxAφyxxAφx=yxxAyAφyxφx=y
21 nfv yxA
22 21 1 nfan yxAφ
23 22 mo3 *xxAφxyxAφyxxAφx=y
24 df-ral xAyAφyxφx=yxxAyAφyxφx=y
25 20 23 24 3bitr4i *xxAφxAyAφyxφx=y
26 2 25 bitri *xAφxAyAφyxφx=y