Metamath Proof Explorer


Theorem rmo3f

Description: Restricted "at most one" using explicit substitution. (Contributed by NM, 4-Nov-2012) (Revised by NM, 16-Jun-2017) (Revised by Thierry Arnoux, 8-Oct-2017)

Ref Expression
Hypotheses rmo3f.1 _xA
rmo3f.2 _yA
rmo3f.3 yφ
Assertion rmo3f *xAφxAyAφyxφx=y

Proof

Step Hyp Ref Expression
1 rmo3f.1 _xA
2 rmo3f.2 _yA
3 rmo3f.3 yφ
4 df-rmo *xAφ*xxAφ
5 sban yxxAφyxxAyxφ
6 1 clelsb1fw yxxAyA
7 6 anbi1i yxxAyxφyAyxφ
8 5 7 bitri yxxAφyAyxφ
9 8 anbi2i xAφyxxAφxAφyAyxφ
10 an4 xAφyAyxφxAyAφyxφ
11 ancom xAyAyAxA
12 11 anbi1i xAyAφyxφyAxAφyxφ
13 9 10 12 3bitri xAφyxxAφyAxAφyxφ
14 13 imbi1i xAφyxxAφx=yyAxAφyxφx=y
15 impexp yAxAφyxφx=yyAxAφyxφx=y
16 impexp yAxAφyxφx=yyAxAφyxφx=y
17 14 15 16 3bitri xAφyxxAφx=yyAxAφyxφx=y
18 17 albii yxAφyxxAφx=yyyAxAφyxφx=y
19 df-ral yAxAφyxφx=yyyAxAφyxφx=y
20 2 nfcri yxA
21 20 r19.21 yAxAφyxφx=yxAyAφyxφx=y
22 18 19 21 3bitr2i yxAφyxxAφx=yxAyAφyxφx=y
23 22 albii xyxAφyxxAφx=yxxAyAφyxφx=y
24 20 3 nfan yxAφ
25 24 mo3 *xxAφxyxAφyxxAφx=y
26 df-ral xAyAφyxφx=yxxAyAφyxφx=y
27 23 25 26 3bitr4i *xxAφxAyAφyxφx=y
28 4 27 bitri *xAφxAyAφyxφx=y