Metamath Proof Explorer


Theorem rmo4

Description: Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006) (Revised by NM, 16-Jun-2017)

Ref Expression
Hypothesis rmo4.1 x=yφψ
Assertion rmo4 *xAφxAyAφψx=y

Proof

Step Hyp Ref Expression
1 rmo4.1 x=yφψ
2 df-rmo *xAφ*xxAφ
3 an4 xAφyAψxAyAφψ
4 ancom xAyAyAxA
5 4 anbi1i xAyAφψyAxAφψ
6 3 5 bitri xAφyAψyAxAφψ
7 6 imbi1i xAφyAψx=yyAxAφψx=y
8 impexp yAxAφψx=yyAxAφψx=y
9 impexp yAxAφψx=yyAxAφψx=y
10 7 8 9 3bitri xAφyAψx=yyAxAφψx=y
11 10 albii yxAφyAψx=yyyAxAφψx=y
12 df-ral yAxAφψx=yyyAxAφψx=y
13 r19.21v yAxAφψx=yxAyAφψx=y
14 11 12 13 3bitr2i yxAφyAψx=yxAyAφψx=y
15 14 albii xyxAφyAψx=yxxAyAφψx=y
16 eleq1w x=yxAyA
17 16 1 anbi12d x=yxAφyAψ
18 17 mo4 *xxAφxyxAφyAψx=y
19 df-ral xAyAφψx=yxxAyAφψx=y
20 15 18 19 3bitr4i *xxAφxAyAφψx=y
21 2 20 bitri *xAφxAyAφψx=y