Metamath Proof Explorer


Theorem rmxp1

Description: Special addition-of-1 formula for X sequence. Part 1 of equation 2.9 of JonesMatijasevic p. 695. (Contributed by Stefan O'Rear, 19-Oct-2014)

Ref Expression
Assertion rmxp1 A 2 N A X rm N + 1 = A X rm N A + A 2 1 A Y rm N

Proof

Step Hyp Ref Expression
1 1z 1
2 rmxadd A 2 N 1 A X rm N + 1 = A X rm N A X rm 1 + A 2 1 A Y rm N A Y rm 1
3 1 2 mp3an3 A 2 N A X rm N + 1 = A X rm N A X rm 1 + A 2 1 A Y rm N A Y rm 1
4 rmx1 A 2 A X rm 1 = A
5 4 adantr A 2 N A X rm 1 = A
6 5 oveq2d A 2 N A X rm N A X rm 1 = A X rm N A
7 rmy1 A 2 A Y rm 1 = 1
8 7 oveq2d A 2 A Y rm N A Y rm 1 = A Y rm N 1
9 8 adantr A 2 N A Y rm N A Y rm 1 = A Y rm N 1
10 frmy Y rm : 2 ×
11 10 fovcl A 2 N A Y rm N
12 11 zcnd A 2 N A Y rm N
13 12 mulid1d A 2 N A Y rm N 1 = A Y rm N
14 9 13 eqtrd A 2 N A Y rm N A Y rm 1 = A Y rm N
15 14 oveq2d A 2 N A 2 1 A Y rm N A Y rm 1 = A 2 1 A Y rm N
16 6 15 oveq12d A 2 N A X rm N A X rm 1 + A 2 1 A Y rm N A Y rm 1 = A X rm N A + A 2 1 A Y rm N
17 3 16 eqtrd A 2 N A X rm N + 1 = A X rm N A + A 2 1 A Y rm N