Metamath Proof Explorer


Theorem rmxyelxp

Description: Lemma for frmx and frmy . (Contributed by Stefan O'Rear, 22-Sep-2014)

Ref Expression
Assertion rmxyelxp A2Nb0×1stb+A212ndb-1A+A21N0×

Proof

Step Hyp Ref Expression
1 rmxypairf1o A2b0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21d
2 1 adantr A2Nb0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21d
3 rmxyelqirr A2NA+A21Na|c0da=c+A21d
4 f1ocnvdm b0×1stb+A212ndb:0×1-1 ontoa|c0da=c+A21dA+A21Na|c0da=c+A21db0×1stb+A212ndb-1A+A21N0×
5 2 3 4 syl2anc A2Nb0×1stb+A212ndb-1A+A21N0×