Metamath Proof Explorer


Theorem rnasclassa

Description: The scalar multiples of the unit vector form a subalgebra of the vectors. (Contributed by SN, 16-Nov-2023)

Ref Expression
Hypotheses rnasclassa.a A=algScW
rnasclassa.u U=W𝑠ranA
rnasclassa.w φWAssAlg
Assertion rnasclassa φUAssAlg

Proof

Step Hyp Ref Expression
1 rnasclassa.a A=algScW
2 rnasclassa.u U=W𝑠ranA
3 rnasclassa.w φWAssAlg
4 ssidd φranAranA
5 1 3 rnasclsubrg φranASubRingW
6 eqid LSubSpW=LSubSpW
7 1 6 issubassa2 WAssAlgranASubRingWranALSubSpWranAranA
8 2 6 issubassa3 WAssAlgranASubRingWranALSubSpWUAssAlg
9 8 expr WAssAlgranASubRingWranALSubSpWUAssAlg
10 7 9 sylbird WAssAlgranASubRingWranAranAUAssAlg
11 3 5 10 syl2anc φranAranAUAssAlg
12 4 11 mpd φUAssAlg