Metamath Proof Explorer


Theorem rngcbasALTV

Description: Set of objects of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C=RngCatALTVU
rngcbasALTV.b B=BaseC
rngcbasALTV.u φUV
Assertion rngcbasALTV φB=URng

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C=RngCatALTVU
2 rngcbasALTV.b B=BaseC
3 rngcbasALTV.u φUV
4 eqidd φURng=URng
5 eqidd φxURng,yURngxRngHomy=xURng,yURngxRngHomy
6 eqidd φvURng×URng,zURngf2ndvRngHomz,g1stvRngHom2ndvfg=vURng×URng,zURngf2ndvRngHomz,g1stvRngHom2ndvfg
7 1 3 4 5 6 rngcvalALTV φC=BasendxURngHomndxxURng,yURngxRngHomycompndxvURng×URng,zURngf2ndvRngHomz,g1stvRngHom2ndvfg
8 catstr BasendxURngHomndxxURng,yURngxRngHomycompndxvURng×URng,zURngf2ndvRngHomz,g1stvRngHom2ndvfgStruct115
9 baseid Base=SlotBasendx
10 snsstp1 BasendxURngBasendxURngHomndxxURng,yURngxRngHomycompndxvURng×URng,zURngf2ndvRngHomz,g1stvRngHom2ndvfg
11 inex1g UVURngV
12 3 11 syl φURngV
13 7 8 9 10 12 2 strfv3 φB=URng