Metamath Proof Explorer


Theorem rngchomALTV

Description: Set of arrows of the category of non-unital rings (in a universe). (New usage is discouraged.) (Contributed by AV, 27-Feb-2020)

Ref Expression
Hypotheses rngcbasALTV.c C=RngCatALTVU
rngcbasALTV.b B=BaseC
rngcbasALTV.u φUV
rngchomfvalALTV.h H=HomC
rngchomALTV.x φXB
rngchomALTV.y φYB
Assertion rngchomALTV φXHY=XRngHomY

Proof

Step Hyp Ref Expression
1 rngcbasALTV.c C=RngCatALTVU
2 rngcbasALTV.b B=BaseC
3 rngcbasALTV.u φUV
4 rngchomfvalALTV.h H=HomC
5 rngchomALTV.x φXB
6 rngchomALTV.y φYB
7 1 2 3 4 rngchomfvalALTV φH=xB,yBxRngHomy
8 oveq12 x=Xy=YxRngHomy=XRngHomY
9 8 adantl φx=Xy=YxRngHomy=XRngHomY
10 ovexd φXRngHomYV
11 7 9 5 6 10 ovmpod φXHY=XRngHomY