Metamath Proof Explorer


Theorem rngchomfeqhom

Description: The functionalized Hom-set operation equals the Hom-set operation in the category of non-unital rings (in a universe). (Contributed by AV, 9-Mar-2020)

Ref Expression
Hypotheses rngcbas.c C=RngCatU
rngcbas.b B=BaseC
rngcbas.u φUV
Assertion rngchomfeqhom φHom𝑓C=HomC

Proof

Step Hyp Ref Expression
1 rngcbas.c C=RngCatU
2 rngcbas.b B=BaseC
3 rngcbas.u φUV
4 1 2 3 rngcbas φB=URng
5 eqid HomC=HomC
6 1 2 3 5 rngchomfval φHomC=RngHomoB×B
7 4 6 rnghmresfn φHomCFnB×B
8 eqid Hom𝑓C=Hom𝑓C
9 8 2 5 fnhomeqhomf HomCFnB×BHom𝑓C=HomC
10 7 9 syl φHom𝑓C=HomC