Metamath Proof Explorer


Theorem rnghmval2

Description: The non-unital ring homomorphisms between two non-unital rings. (Contributed by AV, 1-Mar-2020)

Ref Expression
Assertion rnghmval2 RRngSRngRRngHomoS=RGrpHomSmulGrpRMgmHommulGrpS

Proof

Step Hyp Ref Expression
1 eqid mulGrpR=mulGrpR
2 eqid mulGrpS=mulGrpS
3 1 2 isrnghmmul hRRngHomoSRRngSRnghRGrpHomShmulGrpRMgmHommulGrpS
4 elin hRGrpHomSmulGrpRMgmHommulGrpShRGrpHomShmulGrpRMgmHommulGrpS
5 ibar RRngSRnghRGrpHomShmulGrpRMgmHommulGrpSRRngSRnghRGrpHomShmulGrpRMgmHommulGrpS
6 4 5 bitr2id RRngSRngRRngSRnghRGrpHomShmulGrpRMgmHommulGrpShRGrpHomSmulGrpRMgmHommulGrpS
7 3 6 bitrid RRngSRnghRRngHomoShRGrpHomSmulGrpRMgmHommulGrpS
8 7 eqrdv RRngSRngRRngHomoS=RGrpHomSmulGrpRMgmHommulGrpS