Metamath Proof Explorer


Theorem rngodi

Description: Distributive law for the multiplication operation of a ring (left-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngodi RRingOpsAXBXCXAHBGC=AHBGAHC

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoi RRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
5 4 simprd RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
6 5 simpld RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
7 simp2 xHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxHyGz=xHyGxHz
8 7 ralimi zXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzzXxHyGz=xHyGxHz
9 8 2ralimi xXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXzXxHyGz=xHyGxHz
10 oveq1 x=AxHyGz=AHyGz
11 oveq1 x=AxHy=AHy
12 oveq1 x=AxHz=AHz
13 11 12 oveq12d x=AxHyGxHz=AHyGAHz
14 10 13 eqeq12d x=AxHyGz=xHyGxHzAHyGz=AHyGAHz
15 oveq1 y=ByGz=BGz
16 15 oveq2d y=BAHyGz=AHBGz
17 oveq2 y=BAHy=AHB
18 17 oveq1d y=BAHyGAHz=AHBGAHz
19 16 18 eqeq12d y=BAHyGz=AHyGAHzAHBGz=AHBGAHz
20 oveq2 z=CBGz=BGC
21 20 oveq2d z=CAHBGz=AHBGC
22 oveq2 z=CAHz=AHC
23 22 oveq2d z=CAHBGAHz=AHBGAHC
24 21 23 eqeq12d z=CAHBGz=AHBGAHzAHBGC=AHBGAHC
25 14 19 24 rspc3v AXBXCXxXyXzXxHyGz=xHyGxHzAHBGC=AHBGAHC
26 9 25 syl5 AXBXCXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzAHBGC=AHBGAHC
27 6 26 mpan9 RRingOpsAXBXCXAHBGC=AHBGAHC