Metamath Proof Explorer


Theorem rngohom1

Description: A ring homomorphism preserves 1 . (Contributed by Jeff Madsen, 24-Jun-2011)

Ref Expression
Hypotheses rnghom1.1 H=2ndR
rnghom1.2 U=GIdH
rnghom1.3 K=2ndS
rnghom1.4 V=GIdK
Assertion rngohom1 RRingOpsSRingOpsFRRngHomSFU=V

Proof

Step Hyp Ref Expression
1 rnghom1.1 H=2ndR
2 rnghom1.2 U=GIdH
3 rnghom1.3 K=2ndS
4 rnghom1.4 V=GIdK
5 eqid 1stR=1stR
6 eqid ran1stR=ran1stR
7 eqid 1stS=1stS
8 eqid ran1stS=ran1stS
9 5 1 6 2 7 3 8 4 isrngohom RRingOpsSRingOpsFRRngHomSF:ran1stRran1stSFU=Vxran1stRyran1stRFx1stRy=Fx1stSFyFxHy=FxKFy
10 9 biimpa RRingOpsSRingOpsFRRngHomSF:ran1stRran1stSFU=Vxran1stRyran1stRFx1stRy=Fx1stSFyFxHy=FxKFy
11 10 simp2d RRingOpsSRingOpsFRRngHomSFU=V
12 11 3impa RRingOpsSRingOpsFRRngHomSFU=V