Metamath Proof Explorer


Theorem rngoidmlem

Description: The unity element of a ring is an identity element for the multiplication. (Contributed by FL, 18-Feb-2010) (New usage is discouraged.)

Ref Expression
Hypotheses uridm.1 H=2ndR
uridm.2 X=ran1stR
uridm.3 U=GIdH
Assertion rngoidmlem RRingOpsAXUHA=AAHU=A

Proof

Step Hyp Ref Expression
1 uridm.1 H=2ndR
2 uridm.2 X=ran1stR
3 uridm.3 U=GIdH
4 1 rngomndo RRingOpsHMndOp
5 mndomgmid HMndOpHMagmaExId
6 eqid ranH=ranH
7 6 3 cmpidelt HMagmaExIdAranHUHA=AAHU=A
8 7 ex HMagmaExIdAranHUHA=AAHU=A
9 4 5 8 3syl RRingOpsAranHUHA=AAHU=A
10 eqid 1stR=1stR
11 1 10 rngorn1eq RRingOpsran1stR=ranH
12 eqtr X=ran1stRran1stR=ranHX=ranH
13 simpl X=ranHRRingOpsX=ranH
14 13 eleq2d X=ranHRRingOpsAXAranH
15 14 imbi1d X=ranHRRingOpsAXUHA=AAHU=AAranHUHA=AAHU=A
16 15 ex X=ranHRRingOpsAXUHA=AAHU=AAranHUHA=AAHU=A
17 12 16 syl X=ran1stRran1stR=ranHRRingOpsAXUHA=AAHU=AAranHUHA=AAHU=A
18 2 17 mpan ran1stR=ranHRRingOpsAXUHA=AAHU=AAranHUHA=AAHU=A
19 11 18 mpcom RRingOpsAXUHA=AAHU=AAranHUHA=AAHU=A
20 9 19 mpbird RRingOpsAXUHA=AAHU=A
21 20 imp RRingOpsAXUHA=AAHU=A