Metamath Proof Explorer


Theorem rngqiprng1elbas

Description: The ring unity of a two-sided ideal of a non-unital ring belongs to the base set of the ring. (Contributed by AV, 15-Mar-2025)

Ref Expression
Hypotheses rng2idlring.r φRRng
rng2idlring.i φI2IdealR
rng2idlring.j J=R𝑠I
rng2idlring.u φJRing
rng2idlring.b B=BaseR
rng2idlring.t ·˙=R
rng2idlring.1 1˙=1J
Assertion rngqiprng1elbas φ1˙B

Proof

Step Hyp Ref Expression
1 rng2idlring.r φRRng
2 rng2idlring.i φI2IdealR
3 rng2idlring.j J=R𝑠I
4 rng2idlring.u φJRing
5 rng2idlring.b B=BaseR
6 rng2idlring.t ·˙=R
7 rng2idlring.1 1˙=1J
8 3 5 ressbasss BaseJB
9 eqid BaseJ=BaseJ
10 9 7 ringidcl JRing1˙BaseJ
11 4 10 syl φ1˙BaseJ
12 8 11 sselid φ1˙B