Metamath Proof Explorer


Theorem rnoprab

Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004) (Revised by David Abernethy, 19-Apr-2013)

Ref Expression
Assertion rnoprab ranxyz|φ=z|xyφ

Proof

Step Hyp Ref Expression
1 dfoprab2 xyz|φ=wz|xyw=xyφ
2 1 rneqi ranxyz|φ=ranwz|xyw=xyφ
3 rnopab ranwz|xyw=xyφ=z|wxyw=xyφ
4 exrot3 wxyw=xyφxyww=xyφ
5 opex xyV
6 5 isseti ww=xy
7 19.41v ww=xyφww=xyφ
8 6 7 mpbiran ww=xyφφ
9 8 2exbii xyww=xyφxyφ
10 4 9 bitri wxyw=xyφxyφ
11 10 abbii z|wxyw=xyφ=z|xyφ
12 2 3 11 3eqtri ranxyz|φ=z|xyφ