Metamath Proof Explorer


Theorem rntrclfvOAI

Description: The range of the transitive closure is equal to the range of the relation. (Contributed by OpenAI, 7-Jul-2020)

Ref Expression
Assertion rntrclfvOAI RVrant+R=ranR

Proof

Step Hyp Ref Expression
1 trclfvub RVt+RRdomR×ranR
2 rnss t+RRdomR×ranRrant+RranRdomR×ranR
3 1 2 syl RVrant+RranRdomR×ranR
4 rnun ranRdomR×ranR=ranRrandomR×ranR
5 4 a1i RVranRdomR×ranR=ranRrandomR×ranR
6 rnxpss randomR×ranRranR
7 ssequn2 randomR×ranRranRranRrandomR×ranR=ranR
8 6 7 mpbi ranRrandomR×ranR=ranR
9 5 8 eqtrdi RVranRdomR×ranR=ranR
10 3 9 sseqtrd RVrant+RranR
11 trclfvlb RVRt+R
12 rnss Rt+RranRrant+R
13 11 12 syl RVranRrant+R
14 10 13 eqssd RVrant+R=ranR