Step |
Hyp |
Ref |
Expression |
1 |
|
trclfvub |
|- ( R e. V -> ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) ) |
2 |
|
rnss |
|- ( ( t+ ` R ) C_ ( R u. ( dom R X. ran R ) ) -> ran ( t+ ` R ) C_ ran ( R u. ( dom R X. ran R ) ) ) |
3 |
1 2
|
syl |
|- ( R e. V -> ran ( t+ ` R ) C_ ran ( R u. ( dom R X. ran R ) ) ) |
4 |
|
rnun |
|- ran ( R u. ( dom R X. ran R ) ) = ( ran R u. ran ( dom R X. ran R ) ) |
5 |
4
|
a1i |
|- ( R e. V -> ran ( R u. ( dom R X. ran R ) ) = ( ran R u. ran ( dom R X. ran R ) ) ) |
6 |
|
rnxpss |
|- ran ( dom R X. ran R ) C_ ran R |
7 |
|
ssequn2 |
|- ( ran ( dom R X. ran R ) C_ ran R <-> ( ran R u. ran ( dom R X. ran R ) ) = ran R ) |
8 |
6 7
|
mpbi |
|- ( ran R u. ran ( dom R X. ran R ) ) = ran R |
9 |
5 8
|
eqtrdi |
|- ( R e. V -> ran ( R u. ( dom R X. ran R ) ) = ran R ) |
10 |
3 9
|
sseqtrd |
|- ( R e. V -> ran ( t+ ` R ) C_ ran R ) |
11 |
|
trclfvlb |
|- ( R e. V -> R C_ ( t+ ` R ) ) |
12 |
|
rnss |
|- ( R C_ ( t+ ` R ) -> ran R C_ ran ( t+ ` R ) ) |
13 |
11 12
|
syl |
|- ( R e. V -> ran R C_ ran ( t+ ` R ) ) |
14 |
10 13
|
eqssd |
|- ( R e. V -> ran ( t+ ` R ) = ran R ) |