Metamath Proof Explorer


Theorem rpexp12i

Description: Relative primality passes to symmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014)

Ref Expression
Assertion rpexp12i A B M 0 N 0 A gcd B = 1 A M gcd B N = 1

Proof

Step Hyp Ref Expression
1 rpexp1i A B M 0 A gcd B = 1 A M gcd B = 1
2 1 3adant3r A B M 0 N 0 A gcd B = 1 A M gcd B = 1
3 simp2 A B M 0 N 0 B
4 simp1 A B M 0 N 0 A
5 simp3l A B M 0 N 0 M 0
6 zexpcl A M 0 A M
7 4 5 6 syl2anc A B M 0 N 0 A M
8 simp3r A B M 0 N 0 N 0
9 rpexp1i B A M N 0 B gcd A M = 1 B N gcd A M = 1
10 3 7 8 9 syl3anc A B M 0 N 0 B gcd A M = 1 B N gcd A M = 1
11 gcdcom A M B A M gcd B = B gcd A M
12 7 3 11 syl2anc A B M 0 N 0 A M gcd B = B gcd A M
13 12 eqeq1d A B M 0 N 0 A M gcd B = 1 B gcd A M = 1
14 zexpcl B N 0 B N
15 3 8 14 syl2anc A B M 0 N 0 B N
16 gcdcom A M B N A M gcd B N = B N gcd A M
17 7 15 16 syl2anc A B M 0 N 0 A M gcd B N = B N gcd A M
18 17 eqeq1d A B M 0 N 0 A M gcd B N = 1 B N gcd A M = 1
19 10 13 18 3imtr4d A B M 0 N 0 A M gcd B = 1 A M gcd B N = 1
20 2 19 syld A B M 0 N 0 A gcd B = 1 A M gcd B N = 1