Metamath Proof Explorer


Theorem rpgtrecnn

Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)

Ref Expression
Assertion rpgtrecnn A+n1n<A

Proof

Step Hyp Ref Expression
1 rpreccl A+1A+
2 1 rpred A+1A
3 1 rpge0d A+01A
4 flge0nn0 1A01A1A0
5 2 3 4 syl2anc A+1A0
6 nn0p1nn 1A01A+1
7 5 6 syl A+1A+1
8 flltp1 1A1A<1A+1
9 2 8 syl A+1A<1A+1
10 7 nnrpd A+1A+1+
11 1 10 ltrecd A+1A<1A+111A+1<11A
12 9 11 mpbid A+11A+1<11A
13 rpcn A+A
14 rpne0 A+A0
15 13 14 recrecd A+11A=A
16 12 15 breqtrd A+11A+1<A
17 oveq2 n=1A+11n=11A+1
18 17 breq1d n=1A+11n<A11A+1<A
19 18 rspcev 1A+111A+1<An1n<A
20 7 16 19 syl2anc A+n1n<A