Description: Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | rpgtrecnn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpreccl | |
|
2 | 1 | rpred | |
3 | 1 | rpge0d | |
4 | flge0nn0 | |
|
5 | 2 3 4 | syl2anc | |
6 | nn0p1nn | |
|
7 | 5 6 | syl | |
8 | flltp1 | |
|
9 | 2 8 | syl | |
10 | 7 | nnrpd | |
11 | 1 10 | ltrecd | |
12 | 9 11 | mpbid | |
13 | rpcn | |
|
14 | rpne0 | |
|
15 | 13 14 | recrecd | |
16 | 12 15 | breqtrd | |
17 | oveq2 | |
|
18 | 17 | breq1d | |
19 | 18 | rspcev | |
20 | 7 16 19 | syl2anc | |