Metamath Proof Explorer


Theorem rpsup

Description: The positive reals are unbounded above. (Contributed by Mario Carneiro, 7-May-2016)

Ref Expression
Assertion rpsup sup+*<=+∞

Proof

Step Hyp Ref Expression
1 ioorp 0+∞=+
2 1 supeq1i sup0+∞*<=sup+*<
3 0xr 0*
4 0re 0
5 renepnf 00+∞
6 4 5 ax-mp 0+∞
7 ioopnfsup 0*0+∞sup0+∞*<=+∞
8 3 6 7 mp2an sup0+∞*<=+∞
9 2 8 eqtr3i sup+*<=+∞