Description: Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim . (Contributed by Rohan Ridenour, 13-Aug-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | rr-grothprimbi | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex | |
|
2 | ancom | |
|
3 | biid | |
|
4 | grumnueq | |
|
5 | 4 | ismnu | |
6 | 5 | elv | |
7 | ismnuprim | |
|
8 | 6 7 | bitri | |
9 | 3 8 | expandan | |
10 | 2 9 | bitri | |
11 | 10 | expandexn | |
12 | 1 11 | bitri | |
13 | 12 | albii | |