Metamath Proof Explorer


Theorem rr-grothprimbi

Description: Express "every set is contained in a Grothendieck universe" using only primitives. The right side (without the outermost universal quantifier) is proven as rr-grothprim . (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion rr-grothprimbi xyUnivxyx¬yxy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw

Proof

Step Hyp Ref Expression
1 df-rex yUnivxyyyUnivxy
2 ancom yUnivxyxyyUniv
3 biid xyxy
4 grumnueq Univ=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
5 4 ismnu yVyUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
6 5 elv yUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
7 ismnuprim zy𝒫zyfwy𝒫zwizvyivvfufiuuwzzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
8 6 7 bitri yUnivzzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
9 3 8 expandan xyyUniv¬xy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
10 2 9 bitri yUnivxy¬xy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
11 10 expandexn yyUnivxy¬yxy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
12 1 11 bitri yUnivxy¬yxy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw
13 12 albii xyUnivxyx¬yxy¬zzyf¬wwy¬v¬ttvtz¬vy¬vw¬iizvyivvf¬uufiu¬ooussosw