Metamath Proof Explorer


Theorem rr-grothshort

Description: A shorter equivalent of ax-groth than rr-groth using a few more simple defined symbols. (Contributed by Rohan Ridenour, 8-Oct-2024)

Ref Expression
Assertion rr-grothshort yxyzyf𝒫ywy𝒫zywzff𝒫𝒫w

Proof

Step Hyp Ref Expression
1 gruex yUnivxy
2 1 ax-gen xyUnivxy
3 rr-grothshortbi xyUnivxyxyxyzyf𝒫ywy𝒫zywzff𝒫𝒫w
4 2 3 mpbi xyxyzyf𝒫ywy𝒫zywzff𝒫𝒫w
5 4 spi yxyzyf𝒫ywy𝒫zywzff𝒫𝒫w