Metamath Proof Explorer


Theorem rrvfinvima

Description: For a real-value random variable X , any open interval in RR is the image of a measurable set. (Contributed by Thierry Arnoux, 25-Jan-2017)

Ref Expression
Hypotheses isrrvv.1 φPProb
rrvvf.1 φXRndVarP
Assertion rrvfinvima φy𝔅X-1ydomP

Proof

Step Hyp Ref Expression
1 isrrvv.1 φPProb
2 rrvvf.1 φXRndVarP
3 1 isrrvv φXRndVarPX:domPy𝔅X-1ydomP
4 2 3 mpbid φX:domPy𝔅X-1ydomP
5 4 simprd φy𝔅X-1ydomP