| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0rrv.1 |
|
| 2 |
|
0re |
|
| 3 |
2
|
rgenw |
|
| 4 |
|
eqid |
|
| 5 |
4
|
fmpt |
|
| 6 |
3 5
|
mpbi |
|
| 7 |
6
|
a1i |
|
| 8 |
|
fconstmpt |
|
| 9 |
8
|
cnveqi |
|
| 10 |
|
cnvxp |
|
| 11 |
9 10
|
eqtr3i |
|
| 12 |
11
|
imaeq1i |
|
| 13 |
|
df-ima |
|
| 14 |
|
df-rn |
|
| 15 |
12 13 14
|
3eqtri |
|
| 16 |
|
df-res |
|
| 17 |
|
inxp |
|
| 18 |
|
inv1 |
|
| 19 |
18
|
xpeq2i |
|
| 20 |
16 17 19
|
3eqtri |
|
| 21 |
20
|
cnveqi |
|
| 22 |
21
|
dmeqi |
|
| 23 |
|
cnvxp |
|
| 24 |
23
|
dmeqi |
|
| 25 |
15 22 24
|
3eqtri |
|
| 26 |
|
xpeq2 |
|
| 27 |
|
xp0 |
|
| 28 |
26 27
|
eqtrdi |
|
| 29 |
28
|
dmeqd |
|
| 30 |
|
dm0 |
|
| 31 |
29 30
|
eqtrdi |
|
| 32 |
31
|
adantl |
|
| 33 |
|
domprobsiga |
|
| 34 |
|
0elsiga |
|
| 35 |
1 33 34
|
3syl |
|
| 36 |
35
|
adantr |
|
| 37 |
32 36
|
eqeltrd |
|
| 38 |
25 37
|
eqeltrid |
|
| 39 |
|
dmxp |
|
| 40 |
39
|
adantl |
|
| 41 |
1
|
unveldomd |
|
| 42 |
41
|
adantr |
|
| 43 |
40 42
|
eqeltrd |
|
| 44 |
25 43
|
eqeltrid |
|
| 45 |
38 44
|
pm2.61dane |
|
| 46 |
45
|
ralrimivw |
|
| 47 |
1
|
isrrvv |
|
| 48 |
7 46 47
|
mpbir2and |
|