Step |
Hyp |
Ref |
Expression |
1 |
|
0rrv.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
0re |
⊢ 0 ∈ ℝ |
3 |
2
|
rgenw |
⊢ ∀ 𝑥 ∈ ∪ dom 𝑃 0 ∈ ℝ |
4 |
|
eqid |
⊢ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) = ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) |
5 |
4
|
fmpt |
⊢ ( ∀ 𝑥 ∈ ∪ dom 𝑃 0 ∈ ℝ ↔ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) : ∪ dom 𝑃 ⟶ ℝ ) |
6 |
3 5
|
mpbi |
⊢ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) : ∪ dom 𝑃 ⟶ ℝ |
7 |
6
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) : ∪ dom 𝑃 ⟶ ℝ ) |
8 |
|
fconstmpt |
⊢ ( ∪ dom 𝑃 × { 0 } ) = ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) |
9 |
8
|
cnveqi |
⊢ ◡ ( ∪ dom 𝑃 × { 0 } ) = ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) |
10 |
|
cnvxp |
⊢ ◡ ( ∪ dom 𝑃 × { 0 } ) = ( { 0 } × ∪ dom 𝑃 ) |
11 |
9 10
|
eqtr3i |
⊢ ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) = ( { 0 } × ∪ dom 𝑃 ) |
12 |
11
|
imaeq1i |
⊢ ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) = ( ( { 0 } × ∪ dom 𝑃 ) “ 𝑦 ) |
13 |
|
df-ima |
⊢ ( ( { 0 } × ∪ dom 𝑃 ) “ 𝑦 ) = ran ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) |
14 |
|
df-rn |
⊢ ran ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) = dom ◡ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) |
15 |
12 13 14
|
3eqtri |
⊢ ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) = dom ◡ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) |
16 |
|
df-res |
⊢ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) = ( ( { 0 } × ∪ dom 𝑃 ) ∩ ( 𝑦 × V ) ) |
17 |
|
inxp |
⊢ ( ( { 0 } × ∪ dom 𝑃 ) ∩ ( 𝑦 × V ) ) = ( ( { 0 } ∩ 𝑦 ) × ( ∪ dom 𝑃 ∩ V ) ) |
18 |
|
inv1 |
⊢ ( ∪ dom 𝑃 ∩ V ) = ∪ dom 𝑃 |
19 |
18
|
xpeq2i |
⊢ ( ( { 0 } ∩ 𝑦 ) × ( ∪ dom 𝑃 ∩ V ) ) = ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) |
20 |
16 17 19
|
3eqtri |
⊢ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) = ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) |
21 |
20
|
cnveqi |
⊢ ◡ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) = ◡ ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) |
22 |
21
|
dmeqi |
⊢ dom ◡ ( ( { 0 } × ∪ dom 𝑃 ) ↾ 𝑦 ) = dom ◡ ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) |
23 |
|
cnvxp |
⊢ ◡ ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) = ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) |
24 |
23
|
dmeqi |
⊢ dom ◡ ( ( { 0 } ∩ 𝑦 ) × ∪ dom 𝑃 ) = dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) |
25 |
15 22 24
|
3eqtri |
⊢ ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) = dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) |
26 |
|
xpeq2 |
⊢ ( ( { 0 } ∩ 𝑦 ) = ∅ → ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ( ∪ dom 𝑃 × ∅ ) ) |
27 |
|
xp0 |
⊢ ( ∪ dom 𝑃 × ∅ ) = ∅ |
28 |
26 27
|
eqtrdi |
⊢ ( ( { 0 } ∩ 𝑦 ) = ∅ → ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ∅ ) |
29 |
28
|
dmeqd |
⊢ ( ( { 0 } ∩ 𝑦 ) = ∅ → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = dom ∅ ) |
30 |
|
dm0 |
⊢ dom ∅ = ∅ |
31 |
29 30
|
eqtrdi |
⊢ ( ( { 0 } ∩ 𝑦 ) = ∅ → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ∅ ) |
32 |
31
|
adantl |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) = ∅ ) → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ∅ ) |
33 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
34 |
|
0elsiga |
⊢ ( dom 𝑃 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑃 ) |
35 |
1 33 34
|
3syl |
⊢ ( 𝜑 → ∅ ∈ dom 𝑃 ) |
36 |
35
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) = ∅ ) → ∅ ∈ dom 𝑃 ) |
37 |
32 36
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) = ∅ ) → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) ∈ dom 𝑃 ) |
38 |
25 37
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) = ∅ ) → ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) ∈ dom 𝑃 ) |
39 |
|
dmxp |
⊢ ( ( { 0 } ∩ 𝑦 ) ≠ ∅ → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ∪ dom 𝑃 ) |
40 |
39
|
adantl |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) ≠ ∅ ) → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) = ∪ dom 𝑃 ) |
41 |
1
|
unveldomd |
⊢ ( 𝜑 → ∪ dom 𝑃 ∈ dom 𝑃 ) |
42 |
41
|
adantr |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) ≠ ∅ ) → ∪ dom 𝑃 ∈ dom 𝑃 ) |
43 |
40 42
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) ≠ ∅ ) → dom ( ∪ dom 𝑃 × ( { 0 } ∩ 𝑦 ) ) ∈ dom 𝑃 ) |
44 |
25 43
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( { 0 } ∩ 𝑦 ) ≠ ∅ ) → ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) ∈ dom 𝑃 ) |
45 |
38 44
|
pm2.61dane |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) ∈ dom 𝑃 ) |
46 |
45
|
ralrimivw |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝔅ℝ ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) ∈ dom 𝑃 ) |
47 |
1
|
isrrvv |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) : ∪ dom 𝑃 ⟶ ℝ ∧ ∀ 𝑦 ∈ 𝔅ℝ ( ◡ ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) “ 𝑦 ) ∈ dom 𝑃 ) ) ) |
48 |
7 46 47
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑥 ∈ ∪ dom 𝑃 ↦ 0 ) ∈ ( rRndVar ‘ 𝑃 ) ) |