Step |
Hyp |
Ref |
Expression |
1 |
|
rrvadd.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
rrvadd.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
rrvadd.3 |
⊢ ( 𝜑 → 𝑌 ∈ ( rRndVar ‘ 𝑃 ) ) |
4 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) |
5 |
1 2
|
rrvvf |
⊢ ( 𝜑 → 𝑋 : ∪ dom 𝑃 ⟶ ℝ ) |
6 |
1 3
|
rrvvf |
⊢ ( 𝜑 → 𝑌 : ∪ dom 𝑃 ⟶ ℝ ) |
7 |
1
|
unveldomd |
⊢ ( 𝜑 → ∪ dom 𝑃 ∈ dom 𝑃 ) |
8 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) = ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) ) |
9 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) = ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ) |
10 |
4 5 6 7 8 9
|
ofoprabco |
⊢ ( 𝜑 → ( 𝑋 ∘f + 𝑌 ) = ( ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∘ ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) ) ) |
11 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
12 |
1 11
|
syl |
⊢ ( 𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
13 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
14 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
15 |
13 14
|
mp1i |
⊢ ( 𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
16 |
|
sxsiga |
⊢ ( ( 𝔅ℝ ∈ ∪ ran sigAlgebra ∧ 𝔅ℝ ∈ ∪ ran sigAlgebra ) → ( 𝔅ℝ ×s 𝔅ℝ ) ∈ ∪ ran sigAlgebra ) |
17 |
15 15 16
|
syl2anc |
⊢ ( 𝜑 → ( 𝔅ℝ ×s 𝔅ℝ ) ∈ ∪ ran sigAlgebra ) |
18 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
19 |
2 18
|
mpbid |
⊢ ( 𝜑 → 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
20 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( 𝑌 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑌 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
21 |
3 20
|
mpbid |
⊢ ( 𝜑 → 𝑌 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
22 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑋 ‘ 𝑎 ) = ( 𝑋 ‘ 𝑏 ) ) |
23 |
|
fveq2 |
⊢ ( 𝑎 = 𝑏 → ( 𝑌 ‘ 𝑎 ) = ( 𝑌 ‘ 𝑏 ) ) |
24 |
22 23
|
opeq12d |
⊢ ( 𝑎 = 𝑏 → 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 = 〈 ( 𝑋 ‘ 𝑏 ) , ( 𝑌 ‘ 𝑏 ) 〉 ) |
25 |
24
|
cbvmptv |
⊢ ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) = ( 𝑏 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑏 ) , ( 𝑌 ‘ 𝑏 ) 〉 ) |
26 |
12 15 15 19 21 25
|
mbfmco2 |
⊢ ( 𝜑 → ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) ∈ ( dom 𝑃 MblFnM ( 𝔅ℝ ×s 𝔅ℝ ) ) ) |
27 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
28 |
27
|
raddcn |
⊢ ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn ( topGen ‘ ran (,) ) ) |
29 |
28
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∈ ( ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) Cn ( topGen ‘ ran (,) ) ) ) |
30 |
27
|
sxbrsiga |
⊢ ( 𝔅ℝ ×s 𝔅ℝ ) = ( sigaGen ‘ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) |
31 |
30
|
a1i |
⊢ ( 𝜑 → ( 𝔅ℝ ×s 𝔅ℝ ) = ( sigaGen ‘ ( ( topGen ‘ ran (,) ) ×t ( topGen ‘ ran (,) ) ) ) ) |
32 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
33 |
32
|
a1i |
⊢ ( 𝜑 → 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
34 |
29 31 33
|
cnmbfm |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∈ ( ( 𝔅ℝ ×s 𝔅ℝ ) MblFnM 𝔅ℝ ) ) |
35 |
12 17 15 26 34
|
mbfmco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ , 𝑦 ∈ ℝ ↦ ( 𝑥 + 𝑦 ) ) ∘ ( 𝑎 ∈ ∪ dom 𝑃 ↦ 〈 ( 𝑋 ‘ 𝑎 ) , ( 𝑌 ‘ 𝑎 ) 〉 ) ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
36 |
10 35
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∘f + 𝑌 ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
37 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( ( 𝑋 ∘f + 𝑌 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( 𝑋 ∘f + 𝑌 ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
38 |
36 37
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ∘f + 𝑌 ) ∈ ( rRndVar ‘ 𝑃 ) ) |