Step |
Hyp |
Ref |
Expression |
1 |
|
rrvadd.1 |
|- ( ph -> P e. Prob ) |
2 |
|
rrvadd.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
rrvadd.3 |
|- ( ph -> Y e. ( rRndVar ` P ) ) |
4 |
|
nfmpt1 |
|- F/_ a ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) |
5 |
1 2
|
rrvvf |
|- ( ph -> X : U. dom P --> RR ) |
6 |
1 3
|
rrvvf |
|- ( ph -> Y : U. dom P --> RR ) |
7 |
1
|
unveldomd |
|- ( ph -> U. dom P e. dom P ) |
8 |
|
eqidd |
|- ( ph -> ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) = ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) ) |
9 |
|
eqidd |
|- ( ph -> ( x e. RR , y e. RR |-> ( x + y ) ) = ( x e. RR , y e. RR |-> ( x + y ) ) ) |
10 |
4 5 6 7 8 9
|
ofoprabco |
|- ( ph -> ( X oF + Y ) = ( ( x e. RR , y e. RR |-> ( x + y ) ) o. ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) ) ) |
11 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
12 |
1 11
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
13 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
14 |
|
elrnsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) |
15 |
13 14
|
mp1i |
|- ( ph -> BrSiga e. U. ran sigAlgebra ) |
16 |
|
sxsiga |
|- ( ( BrSiga e. U. ran sigAlgebra /\ BrSiga e. U. ran sigAlgebra ) -> ( BrSiga sX BrSiga ) e. U. ran sigAlgebra ) |
17 |
15 15 16
|
syl2anc |
|- ( ph -> ( BrSiga sX BrSiga ) e. U. ran sigAlgebra ) |
18 |
1
|
rrvmbfm |
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
19 |
2 18
|
mpbid |
|- ( ph -> X e. ( dom P MblFnM BrSiga ) ) |
20 |
1
|
rrvmbfm |
|- ( ph -> ( Y e. ( rRndVar ` P ) <-> Y e. ( dom P MblFnM BrSiga ) ) ) |
21 |
3 20
|
mpbid |
|- ( ph -> Y e. ( dom P MblFnM BrSiga ) ) |
22 |
|
fveq2 |
|- ( a = b -> ( X ` a ) = ( X ` b ) ) |
23 |
|
fveq2 |
|- ( a = b -> ( Y ` a ) = ( Y ` b ) ) |
24 |
22 23
|
opeq12d |
|- ( a = b -> <. ( X ` a ) , ( Y ` a ) >. = <. ( X ` b ) , ( Y ` b ) >. ) |
25 |
24
|
cbvmptv |
|- ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) = ( b e. U. dom P |-> <. ( X ` b ) , ( Y ` b ) >. ) |
26 |
12 15 15 19 21 25
|
mbfmco2 |
|- ( ph -> ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) e. ( dom P MblFnM ( BrSiga sX BrSiga ) ) ) |
27 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
28 |
27
|
raddcn |
|- ( x e. RR , y e. RR |-> ( x + y ) ) e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn ( topGen ` ran (,) ) ) |
29 |
28
|
a1i |
|- ( ph -> ( x e. RR , y e. RR |-> ( x + y ) ) e. ( ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) Cn ( topGen ` ran (,) ) ) ) |
30 |
27
|
sxbrsiga |
|- ( BrSiga sX BrSiga ) = ( sigaGen ` ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) |
31 |
30
|
a1i |
|- ( ph -> ( BrSiga sX BrSiga ) = ( sigaGen ` ( ( topGen ` ran (,) ) tX ( topGen ` ran (,) ) ) ) ) |
32 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
33 |
32
|
a1i |
|- ( ph -> BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) ) |
34 |
29 31 33
|
cnmbfm |
|- ( ph -> ( x e. RR , y e. RR |-> ( x + y ) ) e. ( ( BrSiga sX BrSiga ) MblFnM BrSiga ) ) |
35 |
12 17 15 26 34
|
mbfmco |
|- ( ph -> ( ( x e. RR , y e. RR |-> ( x + y ) ) o. ( a e. U. dom P |-> <. ( X ` a ) , ( Y ` a ) >. ) ) e. ( dom P MblFnM BrSiga ) ) |
36 |
10 35
|
eqeltrd |
|- ( ph -> ( X oF + Y ) e. ( dom P MblFnM BrSiga ) ) |
37 |
1
|
rrvmbfm |
|- ( ph -> ( ( X oF + Y ) e. ( rRndVar ` P ) <-> ( X oF + Y ) e. ( dom P MblFnM BrSiga ) ) ) |
38 |
36 37
|
mpbird |
|- ( ph -> ( X oF + Y ) e. ( rRndVar ` P ) ) |