Step |
Hyp |
Ref |
Expression |
1 |
|
rrvmulc.1 |
|- ( ph -> P e. Prob ) |
2 |
|
rrvmulc.2 |
|- ( ph -> X e. ( rRndVar ` P ) ) |
3 |
|
rrvmulc.3 |
|- ( ph -> C e. RR ) |
4 |
1 2
|
rrvvf |
|- ( ph -> X : U. dom P --> RR ) |
5 |
|
domprobsiga |
|- ( P e. Prob -> dom P e. U. ran sigAlgebra ) |
6 |
1 5
|
syl |
|- ( ph -> dom P e. U. ran sigAlgebra ) |
7 |
6
|
uniexd |
|- ( ph -> U. dom P e. _V ) |
8 |
4 7 3
|
ofcfval4 |
|- ( ph -> ( X oFC x. C ) = ( ( x e. RR |-> ( x x. C ) ) o. X ) ) |
9 |
|
brsigarn |
|- BrSiga e. ( sigAlgebra ` RR ) |
10 |
|
elrnsiga |
|- ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra ) |
11 |
9 10
|
mp1i |
|- ( ph -> BrSiga e. U. ran sigAlgebra ) |
12 |
1
|
rrvmbfm |
|- ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) ) |
13 |
2 12
|
mpbid |
|- ( ph -> X e. ( dom P MblFnM BrSiga ) ) |
14 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
15 |
14 3
|
rmulccn |
|- ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
16 |
|
df-brsiga |
|- BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) |
17 |
16
|
a1i |
|- ( ph -> BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) ) |
18 |
15 17 17
|
cnmbfm |
|- ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( BrSiga MblFnM BrSiga ) ) |
19 |
6 11 11 13 18
|
mbfmco |
|- ( ph -> ( ( x e. RR |-> ( x x. C ) ) o. X ) e. ( dom P MblFnM BrSiga ) ) |
20 |
8 19
|
eqeltrd |
|- ( ph -> ( X oFC x. C ) e. ( dom P MblFnM BrSiga ) ) |
21 |
1
|
rrvmbfm |
|- ( ph -> ( ( X oFC x. C ) e. ( rRndVar ` P ) <-> ( X oFC x. C ) e. ( dom P MblFnM BrSiga ) ) ) |
22 |
20 21
|
mpbird |
|- ( ph -> ( X oFC x. C ) e. ( rRndVar ` P ) ) |