Metamath Proof Explorer


Theorem rrvmulc

Description: A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017) (Revised by Thierry Arnoux, 22-May-2017)

Ref Expression
Hypotheses rrvmulc.1
|- ( ph -> P e. Prob )
rrvmulc.2
|- ( ph -> X e. ( rRndVar ` P ) )
rrvmulc.3
|- ( ph -> C e. RR )
Assertion rrvmulc
|- ( ph -> ( X oFC x. C ) e. ( rRndVar ` P ) )

Proof

Step Hyp Ref Expression
1 rrvmulc.1
 |-  ( ph -> P e. Prob )
2 rrvmulc.2
 |-  ( ph -> X e. ( rRndVar ` P ) )
3 rrvmulc.3
 |-  ( ph -> C e. RR )
4 1 2 rrvvf
 |-  ( ph -> X : U. dom P --> RR )
5 domprobsiga
 |-  ( P e. Prob -> dom P e. U. ran sigAlgebra )
6 1 5 syl
 |-  ( ph -> dom P e. U. ran sigAlgebra )
7 6 uniexd
 |-  ( ph -> U. dom P e. _V )
8 4 7 3 ofcfval4
 |-  ( ph -> ( X oFC x. C ) = ( ( x e. RR |-> ( x x. C ) ) o. X ) )
9 brsigarn
 |-  BrSiga e. ( sigAlgebra ` RR )
10 elrnsiga
 |-  ( BrSiga e. ( sigAlgebra ` RR ) -> BrSiga e. U. ran sigAlgebra )
11 9 10 mp1i
 |-  ( ph -> BrSiga e. U. ran sigAlgebra )
12 1 rrvmbfm
 |-  ( ph -> ( X e. ( rRndVar ` P ) <-> X e. ( dom P MblFnM BrSiga ) ) )
13 2 12 mpbid
 |-  ( ph -> X e. ( dom P MblFnM BrSiga ) )
14 eqid
 |-  ( topGen ` ran (,) ) = ( topGen ` ran (,) )
15 14 3 rmulccn
 |-  ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) )
16 df-brsiga
 |-  BrSiga = ( sigaGen ` ( topGen ` ran (,) ) )
17 16 a1i
 |-  ( ph -> BrSiga = ( sigaGen ` ( topGen ` ran (,) ) ) )
18 15 17 17 cnmbfm
 |-  ( ph -> ( x e. RR |-> ( x x. C ) ) e. ( BrSiga MblFnM BrSiga ) )
19 6 11 11 13 18 mbfmco
 |-  ( ph -> ( ( x e. RR |-> ( x x. C ) ) o. X ) e. ( dom P MblFnM BrSiga ) )
20 8 19 eqeltrd
 |-  ( ph -> ( X oFC x. C ) e. ( dom P MblFnM BrSiga ) )
21 1 rrvmbfm
 |-  ( ph -> ( ( X oFC x. C ) e. ( rRndVar ` P ) <-> ( X oFC x. C ) e. ( dom P MblFnM BrSiga ) ) )
22 20 21 mpbird
 |-  ( ph -> ( X oFC x. C ) e. ( rRndVar ` P ) )