Metamath Proof Explorer


Theorem rrvmulc

Description: A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017) (Revised by Thierry Arnoux, 22-May-2017)

Ref Expression
Hypotheses rrvmulc.1 φPProb
rrvmulc.2 φXRndVarP
rrvmulc.3 φC
Assertion rrvmulc φXfc×CRndVarP

Proof

Step Hyp Ref Expression
1 rrvmulc.1 φPProb
2 rrvmulc.2 φXRndVarP
3 rrvmulc.3 φC
4 1 2 rrvvf φX:domP
5 domprobsiga PProbdomPransigAlgebra
6 1 5 syl φdomPransigAlgebra
7 6 uniexd φdomPV
8 4 7 3 ofcfval4 φXfc×C=xxCX
9 brsigarn 𝔅sigAlgebra
10 elrnsiga 𝔅sigAlgebra𝔅ransigAlgebra
11 9 10 mp1i φ𝔅ransigAlgebra
12 1 rrvmbfm φXRndVarPXdomPMblFnμ𝔅
13 2 12 mpbid φXdomPMblFnμ𝔅
14 eqid topGenran.=topGenran.
15 14 3 rmulccn φxxCtopGenran.CntopGenran.
16 df-brsiga 𝔅=𝛔topGenran.
17 16 a1i φ𝔅=𝛔topGenran.
18 15 17 17 cnmbfm φxxC𝔅MblFnμ𝔅
19 6 11 11 13 18 mbfmco φxxCXdomPMblFnμ𝔅
20 8 19 eqeltrd φXfc×CdomPMblFnμ𝔅
21 1 rrvmbfm φXfc×CRndVarPXfc×CdomPMblFnμ𝔅
22 20 21 mpbird φXfc×CRndVarP