Metamath Proof Explorer


Theorem rrvmulc

Description: A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017) (Revised by Thierry Arnoux, 22-May-2017)

Ref Expression
Hypotheses rrvmulc.1 φ P Prob
rrvmulc.2 φ X RndVar P
rrvmulc.3 φ C
Assertion rrvmulc φ X fc × C RndVar P

Proof

Step Hyp Ref Expression
1 rrvmulc.1 φ P Prob
2 rrvmulc.2 φ X RndVar P
3 rrvmulc.3 φ C
4 1 2 rrvvf φ X : dom P
5 domprobsiga P Prob dom P ran sigAlgebra
6 1 5 syl φ dom P ran sigAlgebra
7 6 uniexd φ dom P V
8 4 7 3 ofcfval4 φ X fc × C = x x C X
9 brsigarn 𝔅 sigAlgebra
10 elrnsiga 𝔅 sigAlgebra 𝔅 ran sigAlgebra
11 9 10 mp1i φ 𝔅 ran sigAlgebra
12 1 rrvmbfm φ X RndVar P X dom P MblFn μ 𝔅
13 2 12 mpbid φ X dom P MblFn μ 𝔅
14 eqid topGen ran . = topGen ran .
15 14 3 rmulccn φ x x C topGen ran . Cn topGen ran .
16 df-brsiga 𝔅 = 𝛔 topGen ran .
17 16 a1i φ 𝔅 = 𝛔 topGen ran .
18 15 17 17 cnmbfm φ x x C 𝔅 MblFn μ 𝔅
19 6 11 11 13 18 mbfmco φ x x C X dom P MblFn μ 𝔅
20 8 19 eqeltrd φ X fc × C dom P MblFn μ 𝔅
21 1 rrvmbfm φ X fc × C RndVar P X fc × C dom P MblFn μ 𝔅
22 20 21 mpbird φ X fc × C RndVar P