Metamath Proof Explorer


Theorem rmulccn

Description: Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017)

Ref Expression
Hypotheses rmulccn.1 J=topGenran.
rmulccn.2 φC
Assertion rmulccn φxxCJCnJ

Proof

Step Hyp Ref Expression
1 rmulccn.1 J=topGenran.
2 rmulccn.2 φC
3 eqid TopOpenfld=TopOpenfld
4 3 cnfldtopon TopOpenfldTopOn
5 4 a1i φTopOpenfldTopOn
6 5 cnmptid φxxTopOpenfldCnTopOpenfld
7 2 recnd φC
8 5 5 7 cnmptc φxCTopOpenfldCnTopOpenfld
9 ax-mulf ×:×
10 ffn ×:××Fn×
11 9 10 ax-mp ×Fn×
12 fnov ×Fn××=y,zyz
13 11 12 mpbi ×=y,zyz
14 3 mulcn ×TopOpenfld×tTopOpenfldCnTopOpenfld
15 13 14 eqeltrri y,zyzTopOpenfld×tTopOpenfldCnTopOpenfld
16 15 a1i φy,zyzTopOpenfld×tTopOpenfldCnTopOpenfld
17 oveq12 y=xz=Cyz=xC
18 5 6 8 5 5 16 17 cnmpt12 φxxCTopOpenfldCnTopOpenfld
19 ax-resscn
20 4 toponunii =TopOpenfld
21 20 cnrest xxCTopOpenfldCnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld
22 18 19 21 sylancl φxxCTopOpenfld𝑡CnTopOpenfld
23 simpr φxx
24 7 adantr φxC
25 23 24 mulcld φxxC
26 25 ralrimiva φxxC
27 eqid xxC=xxC
28 27 fnmpt xxCxxCFn
29 26 28 syl φxxCFn
30 fnssres xxCFnxxCFn
31 29 19 30 sylancl φxxCFn
32 simpr φww
33 fvres wxxCw=xxCw
34 recn ww
35 oveq1 x=wxC=wC
36 ovex wCV
37 35 27 36 fvmpt wxxCw=wC
38 34 37 syl wxxCw=wC
39 33 38 eqtrd wxxCw=wC
40 32 39 syl φwxxCw=wC
41 2 adantr φwC
42 32 41 remulcld φwwC
43 40 42 eqeltrd φwxxCw
44 43 ralrimiva φwxxCw
45 fnfvrnss xxCFnwxxCwranxxC
46 31 44 45 syl2anc φranxxC
47 19 a1i φ
48 cnrest2 TopOpenfldTopOnranxxCxxCTopOpenfld𝑡CnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld𝑡
49 5 46 47 48 syl3anc φxxCTopOpenfld𝑡CnTopOpenfldxxCTopOpenfld𝑡CnTopOpenfld𝑡
50 22 49 mpbid φxxCTopOpenfld𝑡CnTopOpenfld𝑡
51 resmpt xxC=xxC
52 19 51 ax-mp xxC=xxC
53 3 tgioo2 topGenran.=TopOpenfld𝑡
54 1 53 eqtri J=TopOpenfld𝑡
55 54 54 oveq12i JCnJ=TopOpenfld𝑡CnTopOpenfld𝑡
56 55 eqcomi TopOpenfld𝑡CnTopOpenfld𝑡=JCnJ
57 50 52 56 3eltr3g φxxCJCnJ