Step |
Hyp |
Ref |
Expression |
1 |
|
rrvsum.1 |
|
2 |
|
rrvsum.2 |
|
3 |
|
rrvsum.3 |
|
4 |
|
fveq2 |
|
5 |
4
|
eleq1d |
|
6 |
5
|
imbi2d |
|
7 |
|
fveq2 |
|
8 |
7
|
eleq1d |
|
9 |
8
|
imbi2d |
|
10 |
|
fveq2 |
|
11 |
10
|
eleq1d |
|
12 |
11
|
imbi2d |
|
13 |
|
fveq2 |
|
14 |
13
|
eleq1d |
|
15 |
14
|
imbi2d |
|
16 |
|
1z |
|
17 |
|
seq1 |
|
18 |
16 17
|
ax-mp |
|
19 |
|
1nn |
|
20 |
2
|
ffvelrnda |
|
21 |
19 20
|
mpan2 |
|
22 |
18 21
|
eqeltrid |
|
23 |
|
seqp1 |
|
24 |
|
nnuz |
|
25 |
23 24
|
eleq2s |
|
26 |
25
|
ad2antlr |
|
27 |
1
|
ad2antrr |
|
28 |
|
simpr |
|
29 |
|
peano2nn |
|
30 |
2
|
ffvelrnda |
|
31 |
29 30
|
sylan2 |
|
32 |
31
|
adantr |
|
33 |
27 28 32
|
rrvadd |
|
34 |
26 33
|
eqeltrd |
|
35 |
34
|
ex |
|
36 |
35
|
expcom |
|
37 |
36
|
a2d |
|
38 |
6 9 12 15 22 37
|
nnind |
|
39 |
38
|
impcom |
|
40 |
3 39
|
eqeltrd |
|