| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrvsum.1 |
|
| 2 |
|
rrvsum.2 |
|
| 3 |
|
rrvsum.3 |
|
| 4 |
|
fveq2 |
|
| 5 |
4
|
eleq1d |
|
| 6 |
5
|
imbi2d |
|
| 7 |
|
fveq2 |
|
| 8 |
7
|
eleq1d |
|
| 9 |
8
|
imbi2d |
|
| 10 |
|
fveq2 |
|
| 11 |
10
|
eleq1d |
|
| 12 |
11
|
imbi2d |
|
| 13 |
|
fveq2 |
|
| 14 |
13
|
eleq1d |
|
| 15 |
14
|
imbi2d |
|
| 16 |
|
1z |
|
| 17 |
|
seq1 |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
|
1nn |
|
| 20 |
2
|
ffvelcdmda |
|
| 21 |
19 20
|
mpan2 |
|
| 22 |
18 21
|
eqeltrid |
|
| 23 |
|
seqp1 |
|
| 24 |
|
nnuz |
|
| 25 |
23 24
|
eleq2s |
|
| 26 |
25
|
ad2antlr |
|
| 27 |
1
|
ad2antrr |
|
| 28 |
|
simpr |
|
| 29 |
|
peano2nn |
|
| 30 |
2
|
ffvelcdmda |
|
| 31 |
29 30
|
sylan2 |
|
| 32 |
31
|
adantr |
|
| 33 |
27 28 32
|
rrvadd |
|
| 34 |
26 33
|
eqeltrd |
|
| 35 |
34
|
ex |
|
| 36 |
35
|
expcom |
|
| 37 |
36
|
a2d |
|
| 38 |
6 9 12 15 22 37
|
nnind |
|
| 39 |
38
|
impcom |
|
| 40 |
3 39
|
eqeltrd |
|