Step |
Hyp |
Ref |
Expression |
1 |
|
rrvsum.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
2 |
|
rrvsum.2 |
⊢ ( 𝜑 → 𝑋 : ℕ ⟶ ( rRndVar ‘ 𝑃 ) ) |
3 |
|
rrvsum.3 |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑆 = ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 1 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) = ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) ) |
5 |
4
|
eleq1d |
⊢ ( 𝑘 = 1 → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
6 |
5
|
imbi2d |
⊢ ( 𝑘 = 1 → ( ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ) ↔ ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
7 |
|
fveq2 |
⊢ ( 𝑘 = 𝑛 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) = ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ) |
8 |
7
|
eleq1d |
⊢ ( 𝑘 = 𝑛 → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
9 |
8
|
imbi2d |
⊢ ( 𝑘 = 𝑛 → ( ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ) ↔ ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
10 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) = ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
12 |
11
|
imbi2d |
⊢ ( 𝑘 = ( 𝑛 + 1 ) → ( ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ) ↔ ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
13 |
|
fveq2 |
⊢ ( 𝑘 = 𝑁 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) = ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ) |
14 |
13
|
eleq1d |
⊢ ( 𝑘 = 𝑁 → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑘 = 𝑁 → ( ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑘 ) ∈ ( rRndVar ‘ 𝑃 ) ) ↔ ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
16 |
|
1z |
⊢ 1 ∈ ℤ |
17 |
|
seq1 |
⊢ ( 1 ∈ ℤ → ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) = ( 𝑋 ‘ 1 ) ) |
18 |
16 17
|
ax-mp |
⊢ ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) = ( 𝑋 ‘ 1 ) |
19 |
|
1nn |
⊢ 1 ∈ ℕ |
20 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 1 ∈ ℕ ) → ( 𝑋 ‘ 1 ) ∈ ( rRndVar ‘ 𝑃 ) ) |
21 |
19 20
|
mpan2 |
⊢ ( 𝜑 → ( 𝑋 ‘ 1 ) ∈ ( rRndVar ‘ 𝑃 ) ) |
22 |
18 21
|
eqeltrid |
⊢ ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 1 ) ∈ ( rRndVar ‘ 𝑃 ) ) |
23 |
|
seqp1 |
⊢ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∘f + ( 𝑋 ‘ ( 𝑛 + 1 ) ) ) ) |
24 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
25 |
23 24
|
eleq2s |
⊢ ( 𝑛 ∈ ℕ → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∘f + ( 𝑋 ‘ ( 𝑛 + 1 ) ) ) ) |
26 |
25
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) = ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∘f + ( 𝑋 ‘ ( 𝑛 + 1 ) ) ) ) |
27 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → 𝑃 ∈ Prob ) |
28 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) |
29 |
|
peano2nn |
⊢ ( 𝑛 ∈ ℕ → ( 𝑛 + 1 ) ∈ ℕ ) |
30 |
2
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ ( 𝑛 + 1 ) ∈ ℕ ) → ( 𝑋 ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) |
31 |
29 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑋 ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) |
32 |
31
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( 𝑋 ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) |
33 |
27 28 32
|
rrvadd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∘f + ( 𝑋 ‘ ( 𝑛 + 1 ) ) ) ∈ ( rRndVar ‘ 𝑃 ) ) |
34 |
26 33
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) |
35 |
34
|
ex |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
36 |
35
|
expcom |
⊢ ( 𝑛 ∈ ℕ → ( 𝜑 → ( ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
37 |
36
|
a2d |
⊢ ( 𝑛 ∈ ℕ → ( ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑛 ) ∈ ( rRndVar ‘ 𝑃 ) ) → ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ ( 𝑛 + 1 ) ) ∈ ( rRndVar ‘ 𝑃 ) ) ) ) |
38 |
6 9 12 15 22 37
|
nnind |
⊢ ( 𝑁 ∈ ℕ → ( 𝜑 → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ∈ ( rRndVar ‘ 𝑃 ) ) ) |
39 |
38
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( ∘f + , 𝑋 ) ‘ 𝑁 ) ∈ ( rRndVar ‘ 𝑃 ) ) |
40 |
3 39
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ) → 𝑆 ∈ ( rRndVar ‘ 𝑃 ) ) |