Step |
Hyp |
Ref |
Expression |
1 |
|
rrvsum.1 |
|- ( ph -> P e. Prob ) |
2 |
|
rrvsum.2 |
|- ( ph -> X : NN --> ( rRndVar ` P ) ) |
3 |
|
rrvsum.3 |
|- ( ( ph /\ N e. NN ) -> S = ( seq 1 ( oF + , X ) ` N ) ) |
4 |
|
fveq2 |
|- ( k = 1 -> ( seq 1 ( oF + , X ) ` k ) = ( seq 1 ( oF + , X ) ` 1 ) ) |
5 |
4
|
eleq1d |
|- ( k = 1 -> ( ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) <-> ( seq 1 ( oF + , X ) ` 1 ) e. ( rRndVar ` P ) ) ) |
6 |
5
|
imbi2d |
|- ( k = 1 -> ( ( ph -> ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) ) <-> ( ph -> ( seq 1 ( oF + , X ) ` 1 ) e. ( rRndVar ` P ) ) ) ) |
7 |
|
fveq2 |
|- ( k = n -> ( seq 1 ( oF + , X ) ` k ) = ( seq 1 ( oF + , X ) ` n ) ) |
8 |
7
|
eleq1d |
|- ( k = n -> ( ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) <-> ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) ) |
9 |
8
|
imbi2d |
|- ( k = n -> ( ( ph -> ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) ) <-> ( ph -> ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) ) ) |
10 |
|
fveq2 |
|- ( k = ( n + 1 ) -> ( seq 1 ( oF + , X ) ` k ) = ( seq 1 ( oF + , X ) ` ( n + 1 ) ) ) |
11 |
10
|
eleq1d |
|- ( k = ( n + 1 ) -> ( ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) <-> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) ) |
12 |
11
|
imbi2d |
|- ( k = ( n + 1 ) -> ( ( ph -> ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) ) <-> ( ph -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) ) ) |
13 |
|
fveq2 |
|- ( k = N -> ( seq 1 ( oF + , X ) ` k ) = ( seq 1 ( oF + , X ) ` N ) ) |
14 |
13
|
eleq1d |
|- ( k = N -> ( ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) <-> ( seq 1 ( oF + , X ) ` N ) e. ( rRndVar ` P ) ) ) |
15 |
14
|
imbi2d |
|- ( k = N -> ( ( ph -> ( seq 1 ( oF + , X ) ` k ) e. ( rRndVar ` P ) ) <-> ( ph -> ( seq 1 ( oF + , X ) ` N ) e. ( rRndVar ` P ) ) ) ) |
16 |
|
1z |
|- 1 e. ZZ |
17 |
|
seq1 |
|- ( 1 e. ZZ -> ( seq 1 ( oF + , X ) ` 1 ) = ( X ` 1 ) ) |
18 |
16 17
|
ax-mp |
|- ( seq 1 ( oF + , X ) ` 1 ) = ( X ` 1 ) |
19 |
|
1nn |
|- 1 e. NN |
20 |
2
|
ffvelrnda |
|- ( ( ph /\ 1 e. NN ) -> ( X ` 1 ) e. ( rRndVar ` P ) ) |
21 |
19 20
|
mpan2 |
|- ( ph -> ( X ` 1 ) e. ( rRndVar ` P ) ) |
22 |
18 21
|
eqeltrid |
|- ( ph -> ( seq 1 ( oF + , X ) ` 1 ) e. ( rRndVar ` P ) ) |
23 |
|
seqp1 |
|- ( n e. ( ZZ>= ` 1 ) -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) = ( ( seq 1 ( oF + , X ) ` n ) oF + ( X ` ( n + 1 ) ) ) ) |
24 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
25 |
23 24
|
eleq2s |
|- ( n e. NN -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) = ( ( seq 1 ( oF + , X ) ` n ) oF + ( X ` ( n + 1 ) ) ) ) |
26 |
25
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) = ( ( seq 1 ( oF + , X ) ` n ) oF + ( X ` ( n + 1 ) ) ) ) |
27 |
1
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> P e. Prob ) |
28 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) |
29 |
|
peano2nn |
|- ( n e. NN -> ( n + 1 ) e. NN ) |
30 |
2
|
ffvelrnda |
|- ( ( ph /\ ( n + 1 ) e. NN ) -> ( X ` ( n + 1 ) ) e. ( rRndVar ` P ) ) |
31 |
29 30
|
sylan2 |
|- ( ( ph /\ n e. NN ) -> ( X ` ( n + 1 ) ) e. ( rRndVar ` P ) ) |
32 |
31
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( X ` ( n + 1 ) ) e. ( rRndVar ` P ) ) |
33 |
27 28 32
|
rrvadd |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( ( seq 1 ( oF + , X ) ` n ) oF + ( X ` ( n + 1 ) ) ) e. ( rRndVar ` P ) ) |
34 |
26 33
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) |
35 |
34
|
ex |
|- ( ( ph /\ n e. NN ) -> ( ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) ) |
36 |
35
|
expcom |
|- ( n e. NN -> ( ph -> ( ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) ) ) |
37 |
36
|
a2d |
|- ( n e. NN -> ( ( ph -> ( seq 1 ( oF + , X ) ` n ) e. ( rRndVar ` P ) ) -> ( ph -> ( seq 1 ( oF + , X ) ` ( n + 1 ) ) e. ( rRndVar ` P ) ) ) ) |
38 |
6 9 12 15 22 37
|
nnind |
|- ( N e. NN -> ( ph -> ( seq 1 ( oF + , X ) ` N ) e. ( rRndVar ` P ) ) ) |
39 |
38
|
impcom |
|- ( ( ph /\ N e. NN ) -> ( seq 1 ( oF + , X ) ` N ) e. ( rRndVar ` P ) ) |
40 |
3 39
|
eqeltrd |
|- ( ( ph /\ N e. NN ) -> S e. ( rRndVar ` P ) ) |