| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrvmulc.1 |
⊢ ( 𝜑 → 𝑃 ∈ Prob ) |
| 2 |
|
rrvmulc.2 |
⊢ ( 𝜑 → 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ) |
| 3 |
|
rrvmulc.3 |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 4 |
1 2
|
rrvvf |
⊢ ( 𝜑 → 𝑋 : ∪ dom 𝑃 ⟶ ℝ ) |
| 5 |
|
domprobsiga |
⊢ ( 𝑃 ∈ Prob → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 6 |
1 5
|
syl |
⊢ ( 𝜑 → dom 𝑃 ∈ ∪ ran sigAlgebra ) |
| 7 |
6
|
uniexd |
⊢ ( 𝜑 → ∪ dom 𝑃 ∈ V ) |
| 8 |
4 7 3
|
ofcfval4 |
⊢ ( 𝜑 → ( 𝑋 ∘f/c · 𝐶 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∘ 𝑋 ) ) |
| 9 |
|
brsigarn |
⊢ 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) |
| 10 |
|
elrnsiga |
⊢ ( 𝔅ℝ ∈ ( sigAlgebra ‘ ℝ ) → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
| 11 |
9 10
|
mp1i |
⊢ ( 𝜑 → 𝔅ℝ ∈ ∪ ran sigAlgebra ) |
| 12 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
| 13 |
2 12
|
mpbid |
⊢ ( 𝜑 → 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
| 14 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
| 15 |
14 3
|
rmulccn |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) ) |
| 16 |
|
df-brsiga |
⊢ 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 𝔅ℝ = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) ) |
| 18 |
15 17 17
|
cnmbfm |
⊢ ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( 𝔅ℝ MblFnM 𝔅ℝ ) ) |
| 19 |
6 11 11 13 18
|
mbfmco |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∘ 𝑋 ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
| 20 |
8 19
|
eqeltrd |
⊢ ( 𝜑 → ( 𝑋 ∘f/c · 𝐶 ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) |
| 21 |
1
|
rrvmbfm |
⊢ ( 𝜑 → ( ( 𝑋 ∘f/c · 𝐶 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( 𝑋 ∘f/c · 𝐶 ) ∈ ( dom 𝑃 MblFnM 𝔅ℝ ) ) ) |
| 22 |
20 21
|
mpbird |
⊢ ( 𝜑 → ( 𝑋 ∘f/c · 𝐶 ) ∈ ( rRndVar ‘ 𝑃 ) ) |