Metamath Proof Explorer


Theorem rrvmulc

Description: A random variable multiplied by a constant is a random variable. (Contributed by Thierry Arnoux, 17-Jan-2017) (Revised by Thierry Arnoux, 22-May-2017)

Ref Expression
Hypotheses rrvmulc.1 ( 𝜑𝑃 ∈ Prob )
rrvmulc.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
rrvmulc.3 ( 𝜑𝐶 ∈ ℝ )
Assertion rrvmulc ( 𝜑 → ( 𝑋f/c · 𝐶 ) ∈ ( rRndVar ‘ 𝑃 ) )

Proof

Step Hyp Ref Expression
1 rrvmulc.1 ( 𝜑𝑃 ∈ Prob )
2 rrvmulc.2 ( 𝜑𝑋 ∈ ( rRndVar ‘ 𝑃 ) )
3 rrvmulc.3 ( 𝜑𝐶 ∈ ℝ )
4 1 2 rrvvf ( 𝜑𝑋 : dom 𝑃 ⟶ ℝ )
5 domprobsiga ( 𝑃 ∈ Prob → dom 𝑃 ran sigAlgebra )
6 1 5 syl ( 𝜑 → dom 𝑃 ran sigAlgebra )
7 6 uniexd ( 𝜑 dom 𝑃 ∈ V )
8 4 7 3 ofcfval4 ( 𝜑 → ( 𝑋f/c · 𝐶 ) = ( ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∘ 𝑋 ) )
9 brsigarn 𝔅 ∈ ( sigAlgebra ‘ ℝ )
10 elrnsiga ( 𝔅 ∈ ( sigAlgebra ‘ ℝ ) → 𝔅 ran sigAlgebra )
11 9 10 mp1i ( 𝜑 → 𝔅 ran sigAlgebra )
12 1 rrvmbfm ( 𝜑 → ( 𝑋 ∈ ( rRndVar ‘ 𝑃 ) ↔ 𝑋 ∈ ( dom 𝑃 MblFnM 𝔅 ) ) )
13 2 12 mpbid ( 𝜑𝑋 ∈ ( dom 𝑃 MblFnM 𝔅 ) )
14 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
15 14 3 rmulccn ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( ( topGen ‘ ran (,) ) Cn ( topGen ‘ ran (,) ) ) )
16 df-brsiga 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) )
17 16 a1i ( 𝜑 → 𝔅 = ( sigaGen ‘ ( topGen ‘ ran (,) ) ) )
18 15 17 17 cnmbfm ( 𝜑 → ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∈ ( 𝔅 MblFnM 𝔅 ) )
19 6 11 11 13 18 mbfmco ( 𝜑 → ( ( 𝑥 ∈ ℝ ↦ ( 𝑥 · 𝐶 ) ) ∘ 𝑋 ) ∈ ( dom 𝑃 MblFnM 𝔅 ) )
20 8 19 eqeltrd ( 𝜑 → ( 𝑋f/c · 𝐶 ) ∈ ( dom 𝑃 MblFnM 𝔅 ) )
21 1 rrvmbfm ( 𝜑 → ( ( 𝑋f/c · 𝐶 ) ∈ ( rRndVar ‘ 𝑃 ) ↔ ( 𝑋f/c · 𝐶 ) ∈ ( dom 𝑃 MblFnM 𝔅 ) ) )
22 20 21 mpbird ( 𝜑 → ( 𝑋f/c · 𝐶 ) ∈ ( rRndVar ‘ 𝑃 ) )